REAKTIONEN VON KOMPLEXLIGANDEN

XXIV *. SYNTHESE VON NAPHTHOL-DERIVATEN AUS CARBONYL-CARBEN-KOMPLEXEN UND ALKINEN: REGIOSELEKTIVER EINBAU DES ALKINS IN DAS NAPHTHALIN-GERÜST

KARL HEINZ DÖTZ*, JOCHEN MÜHLEMEJER, ULRICH SCHUBERT und OLLI ORAMA **

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-8046 Garching (B.R.D.)

(Eingegangen den 26. November 1982)

Summary

Pentacarbonyl(methoxyphenylcarbene)chromium reacts with various alkynes to give tricarbonyl(4-methoxy-1-naphthol)chromium complexes. Aliphatic n-1-alkynes yield regiospecifically 2-alkylnaphthol compounds; 2-alkynes, however, lead to mixtures of 2,3-dialkylnaphthol derivatives, with the 3-methyl isomers as major products. With diarylacetylenes the regioselectivity of the incorporation of the alkyne is practically lost. The ratios of the isomers are determined on the basis of ¹H NMR spectroscopy using the tricarbonylchromium complexes and, in part, the uncoordinated naphthols. The structure of 3-p-trifluormethylphenyl-4-methoxy-2-p-tolyl-1-naphthol is determined by X-ray spectroscopy.

Zusammenfassung

Pentacarbonyl(methoxyphenylcarben)chrom reagiert mit verschiedenen Alkinen zu Tricarbonyl(4-methoxy-1-naphthol)chrom-Komplexen. Aliphatische n-1-Alkine werden regiospezifisch in 2-Alkyl-naphthol-Verbindungen übergeführt. Dagegen ergeben 2-Alkine 2,3-Dialkyl-Isomerengemische, wobei die 3-Methyl-Verbindungen deutlich überwiegen. Bei Diarylacetylenen geht die Regioselektivität des Alkineinbaus nahezu vollständig verloren. Die Isomerenverhältnisse werden ¹H-NMRspektroskopisch bei den Tricarbonylchrom-Komplexen und zum Teil auch bei den unkoordinierten Naphtholen ermittelt. Die Struktur des 3-p-Trifluormethylphenyl-4-methoxy-2-p-tolyl-1-naphthols wird röntgenographisch bestimmt.

^{*} XXIII. Mitteilung siehe Ref. 1.

^{**}Ständige Adresse: Department of Chemistry, University of Helsinki, Vuorikatu 20 H: Ki 10 (Finnland).

Pentacarbonyl(phenylcarben)-Komplexe des Chroms reagieren mit aliphatischen oder aromatischen Alkinen zu chrom-koordinierten 1-Naphtholen [2,3]. Mit Hilfe dieser Reaktion konnte vor kurzem ein neuer, stereospezifischer Zugang zu den Vitaminen der K-Reihe eröffnet werden [4]. Für die Synthese weiterer Naturstoffe ist von Bedeutung, inwieweit die Alkin-Komponente regioselektiv in das Naphthol-Gerüst eingebaut wird. Unter diesem Gesichtspunkt haben wir eine Reihe von Alkinen eingehender untersucht [5].

Präparative Ergebnisse

Pentacarbonyl(methoxyphenylcarben)chrom (I) reagiert mit den Alkinen II–VIII beim Erwärmen in t-Butylmethylether zu den Tricarbonyl(4-methoxy-1-naphthol)chrom-Komplexen IX–XV. Um die Regioselektivität der C–C-Verknüpfung zu untersuchen, wurden die ¹H-NMR-Spektren der durch Säulenchromatographie gereinigten Tricarbonylchrom-Komplexe herangezogen. In einigen Fällen (IX, X) wurden zusätzlich noch die durch Ligandensubstitution unter CO-Druck [4,6] erhaltenen unkoordinierten Naphthol-Derivate vermessen. Dabei zeigte sich, dass die n-1-Alkine II und III regiospezifisch in die 2-Alkyl-naphthole IX und X übergeführt werden [7]. Auch die disubstituierten Acetylene V–VIII liefern jeweils nur ein Isomeres. Während aufgrund eines Vergleichs mit den ¹H-NMR-Spektren von 2-Alkyl-3-methyl-4-methoxy-1-naphthol- und 2,3-Diaryl-4-methoxy-1-naphtholchrom-Komplexen [2,3,6] für die Verbindung XV die 2-Phenyl-3-methyl-Substitution wahrscheinlich gemacht werden konnte, liess sich für die 2,3-Dialkyl-Verbindungen XII–XIV keine zweifelsfreie Zuordnung treffen.

Während n-1-Alkine regiospezifisch 2-Alkyl-1-naphthol-Komplexe ergeben, erhält man mit den 2-Alkylalkinen XVI–XIX die Stereoisomerenpaare XXa, XXb–XXIIIa, XXIIIb. Dabei überwiegt jeweils das 3-Methyl-Isomere a: Beispielsweise wurden aus den ¹H-NMR-Spektren Isomerenverhältnisse a/b von 2.2/1 (XX), 1.7/1 (XXIII) und 11.5/1 (XXII) ermittelt. Dies zeigt, dass bei den 2-Alkinen eine Erhöhung der Regioselektivität nicht durch eine Kettenverlängerung, wohl aber durch eine Verzweigung in α -Stellung des Alkinsubstituenten zu erreichen ist. Dagegen wirkt sich die Verlängerung eines Alkinsubstituenten günstig auf die Isomerentrennung aus. So liessen sich im Gegensatz zu den kurzkettigen Dialkyl-Verbindungen (z.B. XX und XXI) die stereoisomeren Phytyl-naphthol-Komplexe XXIIIa und XXIIIb durch Säulenchromatographie an Kieselgel trennen. Die Zuordnung der Isomeren a und b wurde stets aufgrund der chemischen Verschiebungen der ringständigen Methyl- und Methoxyprotonen im ¹H-NMR-Spektrum getroffen, wobei auf die Struktur des röntgenographisch gesicherten, aus 2-Pentin (XVI) erhältlichen Hauptprodukts XXa zurückgegriffen werden konnte [8].

Die Regioselektivität des Alkineinbaus geht bei Diarylalkinen nahezu vollständig verloren. Bei den Tolan-Derivaten XXIV-XXVI wird eine nur mehr geringe Bevorzugung eines Isomeren beobachtet. So lässt sich aus den ¹H-NMR-Spektren der Tricarbonylchrom-Komplexe XXVII-XXIX ein Isomerenverhältnis von ca. 1.2/1 ermitteln. Da eine spektroskopische Zuordnung der Isomeren nicht möglich war, wurde das Substitutionsmuster an dem überwiegend entstandenen Isomeren XXIXa durch eine Röntgenstrukturanalyse des unkoordinierten Naphtholliganden gesichert.

Wie bereits früher an ähnlichen $1-4:9,10-\eta$ -Komplexen gezeigt wurde [2], erfolgt beim Erwärmen in Lösung eine Umlagerung in die thermodynamisch stabileren $5-10-\eta$ -Isomeren.

Die aus Carbenligand, Carbonylligand und Alkin aufgebauten Naphtholliganden lassen sich durch Ligandensubstitution nahezu quantitativ vom Metall ablösen. Als geeigneter substituierender Ligand hat sich insbesondere Kohlenmonoxid erwiesen, da das hierbei entstehende Hexacarbonylchrom wiederum als Ausgangsprodukt für den Carben-Komplex I herangezogen werden kann. Die oxidative Spaltung der Metall-Ring-Bindung, z.B. mit Salpetersäure, Cer(IV)ammoniumnitrat oder schonender mit Silber(I)oxid, liefert die entsprechenden 1,4-Naphthochinone. Durch den Befund, dass neben den Chinonen XLV, XLVI und XLVIII-L keine weiteren

organischen Oxidationsprodukte isoliert werden können, werden die Verbindungen XX, XXIII und XXVII-XXIX als Komplexe mit 2,3-stellungsisomeren Naphtholliganden bestätigt.

Spektroskopische Untersuchungen

IR-Spektren

Die Naphthol-Komplexe weisen in der Regel das für Aromaten(tricarbonyl)chrom-Verbindungen charakteristische Bandenmuster [9] auf. Die Lage der ν (CO)-Banden zeigt dabei an, dass die Koordination des Naphthalinsystems bei IX-XV, XX-XXIII und XXVII-XXIX über den substituierten Ring, bei XXX- XXXIII hingegen über den unsubstituierten Ring erfolgt [2]. Bei den t-butyl-substituierten Komplexen werden jeweils zwei kurzwellige Banden beobachtet. Dies lässt sich damit erklären, dass die Rotation des Naphtholliganden um die Ring-Metall-Bindung aus sterischen Gründen erschwert ist und somit die beiden unter sterischen und elektronischen Gesichtspunkten bevorzugten Rotameren A und B spektroskopisch nachweisbar werden. Eine Verunreinigung durch 5-10- η -Naphthol-Komplexe kann anhand der ¹H-NMR-Spektren ausgeschlossen werden.

Bei den arylsubstituierten Naphthol-Komplexen treten in n-Hexan fünf ν (CO)-Banden auf. Dies ist nicht auf Isomere bezüglich der Substitution in 2,3-Stellung zurückzuführen, wie das Beispiel des Tricarbonyl[1-4:9,10- η -(4-methoxy-2,3-diphenyl-1-naphthol)]chroms zeigt, bei dem ein ähnliches Bandenmuster beobachtet wird [10]. Vielmehr erscheint auch hier eine gehinderte Rotation um die Ring-Metall-Bindung wahrscheinlich. Die ν (CO)-Absorptionen sind in Tabelle 1 zusammengestellt.

(Fortsetzung s. S. 194)

TABELLE 1

 ν (CO)-ABSORPTIONEN DER NAPHTHOL-KOMPLEXE IX–XV, XX–XXIII, XXVII–XXIX UND XXX–XXXIII (in cm $^{-1}$)

IX ^a		1956		1885	1876
X ^a		1954		1881	1872
XI ^a	1960	1953		1879	1870
XII a		1954		1881	1873
XIII ^a	1962	1958		1887	1880
XIV ^a		1953		1874	1869
XV ^b	1972	1965	1910	1900	1886
XXa, XXb ^a	1963	1957		1887	1876
XXIa, XXIb ^a		1956		1881	1873
XXIIa, XXIIb ^a	1963	1957		1895	1878
XXIIIa ^a		1955		1883 °	
XXIIIb ^a		1957		1885	1872
XXVIIa, XXVIIb ^b	1970	1963	1911	1901	1881
XXVIIIa, XXVIIIb ^b	1973	1967	1918	1907	1884
XXIXa, XXIXb ^b	1973	1966	1916	1906	1884
XXX ^b		1974	1918	1910	1900
XXXIa, XXXIb ^b	1983	1974	1917	1910	1901
XXXIIa, XXXIIb ^b		1976		1912	1905
XXXIIIa, XXXIIIb ^b	1984	1975	1918	1912	1903

" In Kohlenstoffdisulfid. ^b In n-Hexan. ^c Breit.

¹H-NMR-SPEKTREN DER NAPHTHOL-KOMPLEXE IX-XV, XX-XXIII UND XXVII-XXXIII (in Benzol- d_6 , rel. i. TMS in δ ppm)

	H(5-8)	ОН	OCH ₃	CH ₂	CH ₃
IX ^a	ca.7.90(M,2)	b	3.22(S,3)	2.21(M,2)	0.76(T,3)
X ^c	ca.7.00(M,2) ca.7.90(M,2) ca.7.00(M,2)	4.23(Br)	3.27(\$,3)	1.32(M,2) 2.34(M,2) 1.47(M,2)	0.92(T,3)
XI ^{d,e}	ca.7.75(M,1) ca.7.45(M,1) ca.6.75(M,2)	Ь	3.21(\$,3)	1.26(M,10)	
XII	ca.7.60(M,2) ca.6.95(M,2)	4.31(Br)	3.59(\$,3)	ca.2.55(M,4) 1.45(M.2)	0.95(M,6)
XIII ^f	ca.7.40(M,2) ca.6.80(M,2)	4.58(Br)	3.54(S,3)	ca.2.85(M,2)	1.03(T,3)
XIV	ca.7.65(M,2) ca.7.00(M,2)	4.34(Br)	3.61(\$,3)	ca.2.50(M,4) ca.1.40(M,6)	0.88(M,6)
XV ^g	ca.7.80(M,2) ca.7.00(M,2)	4.47(Br)	3.51(S,3)		1.95(\$,3)
XXa ^h	ca.7.60(M,2) ca.6.90(M,2)	Ь	3.40(S,3)	2.30(M,2)	2.06(S,3) 0.87(T.3)
XXIa ⁱ	ca.7.65(M,2) ca.7.00(M,2)	4.41(Br)	3.43(S,3)	2.35(M,2) 1.24(M,2)	2.10(S,3) 0.83(T,3)
XXIIa ^{j,k}	7.48(M,1) 7.16(M,1) 6.80(M.2)	4.64(Br)	3.35(S,3)		2.32(S,3)
XXIII ^{I,m}	ca.7.65(M,2) ca.6.85(M,2)	5.63(Br)	3.43(\$,3)	3.05(D,2) 1.91(M,2) 1.26(Br.16)	2.11(S,3) 1.57(S,3) 0.88(D 12)
XXVIIa ^{n,o}	7.95(M,2) 7.35(M,2)	4.67(Br)	3.18(S,3)	(,)	1.89(S,3)
XXVIIIa ^{P,q}	ca.8.00(M.2)	ь	3.10(S.3)		
XXIXa ^{7,8}	ca.8.05(M.2)	4.33(Br)	3.17(S.3)		1.89(\$ 3)
XXX '	ca.6.15(M,2) ca.4.75(M,2)	5.01(S)	3.64(S,3)		1.85(S,3)
XXXIa ^{u,v}	ca.6.20(M,2) ca.4.80(M,2)	5.40(Br)	3.27(S,3)		1.87(S,3)
XXXIIa ^{w, x}	ca.6.25(M,2) ca.4.85(M,2)	5.31(Br)	3.11(S,3)		
XXXIIIa ^{y,z}	ca.6.20(M,2) ca.4.85(M,2)	5.42(Br)	3.14(S,3)		1.90(S,3)

^a H(3) 4.65(S,1). ^b Nicht eindeutig zuzuordnen. ^c H(3) 4.75(S,1). ^d H(3) 5.08(S,1). ^et-C₄H₉ 1.36(S,9). ^ft-C₄H₉ 1.52(S,9). ^g 2-C₆H₅ 7.16(M,5). ^h XXb OCH₃ 3.51(S,3); 2-CH₃ 1.75(S,3). ⁱ XXIb OCH₃ 3.58(S,3); 2-CH₃ 1.78(S,3). ⁱ t-C₄H₉ 1.48(S,9). ^k XXIIb OCH₃ 3.46(S,3); 2-CH₃ 2.49(S,3); t-C₄H₉ 1.55(S,9). ⁱ ==CH 5.31(T,1); CH 1.26(Br,3). ^m XXIIIb OCH₃ 3.50(S,3); 1'-CH₂ 3.25(D,2); 2-CH₃: 2.03(S,3). ⁿ C₆H₅, C₆H₄ ca.6.90(M,9). ^o XXVIIb OCH₃ 3.23(S,3); CH₃ 1.93(S,3). ^p C₆H₅, C₆H₄, H(6,7) ca.6.70-7.60(M). ^q XXVI-Ibb: OCH₃ 3.00(S,3). ⁱ C₆H₅, C₆H₄, H(6,7) ca.6.60-7.60(M). ⁱ XXIXb OH 4.73(Br); OCH₃ 3.17(S,3); CH₃ 1.90(S,3). ⁱ C₆H₅, c₆H₄ ca.6.50-7.75(M,9). ^x XXXIb OCH₃ 3.21(S,3). ^y C₆H₄ ca.6.55-7.65(M,8). ⁱ XXXIIb OCH₃ 3.27(S,3); CH₃ 1.87(S,3).

TABELLE 3

'H-NMR-SPEKTREN	DER	NAPHTHOLE	XXXIV-XLIII	SOWIE	DER	NAPHTHOCHINONE
XLIV-L (in Benzol-d ₆ ,	rel. i.	TMS in δ ppm) ^a				

	H(5-8)	он	OCH ₃	CH ₂	CH3
XXXIV ^b	8.48(M,1) 8.09(M,1)	4.58(Br)	3.49(S,3)	2.50(T,2) 1.95(M,2)	0.89(T,3)
XXXV	7.30(M,2) 8.44(M,1) 8.02(M,1) 7.22(M,2)	4.54(Br)	3.50(S,3)	2.56(M,2) 1.27(M,12)	0.95(T,3)
XXXVI ^d	7.52(M,2) 7.97(M,1) 7.53(M,1) ca.7.05(M.2)	4.68(Br)	3.52(S,3)		
XXXVII "	ca.8.10(M,2) ca.7.20(M,2)	6.10(Br)	3.62(S,3)	2.67(M,2)	2.27(S,3) 1.09(T,3)
XXXVIII ^{f.q}	ca.7.90(M,2) ca.7.10(M,2)	5.58(Br)	3.53(S,3)	3.41(D,2) 1.86(M,2) 1.22(Br,16)	2.27(S,3) 1.66(S,3) 0.88(D,12)
XXXIX	8.12(M,2) 7.34(M,2)	h	3.63(S,3)	2.74(M,4) 1.53(M,6)	1.01(M,6)
XL'	ca.8.50(M,1) ca.8.20(M,1) ca.7.40(M,2)	4.96(s)	3.60(S,3)		2.12(S,3)
XLI ^{k,l}	ca.8.55(M,1) ca.8.25(M,1) ca.7.40(M,2)	5.44(Br)	3.34(S,3)		1.99(S,3)
XLII ^{m,n}	ca.8.35(M.2)	4.99(S)	3.27(5.3)		
XLIII ^{o, p}	ca.8.50(M,1) ca.8.20(M,1)	5.39(S)	3.17(S,3)		1.88(S,3)
XLIV 4	7.97(M,2) 7.02(M,2)				
XLV	ca.8.00(M,2) ca.7.05(M,2)			2.35(Q,2)	1.83(S,3) 0.88(T,3)
XLVI '	ca.7.95(M,2) ca.7.05(M,2)			3.23(D,2) 1.40(M,2) 1.24(Br 16)	1.98(S,3) 1.73(S,3) 0.88(D 12)
XLVII ^s	ca.7.95(M,2) ca.7.15(M,2)		ĩ		1.86(S,3)
XLVIII ' XLIX "	ca.8.05(M,2) ca.8.05(M,2)				1.94(S,3)
L ^v	ca.8.05(M,2)				1.92(S,3)

^a Bei Isomerengemischen sind die Daten des Hauptprodukts in die Tabelle aufgenommen. Das Nebenprodukt ist in einer Fussnote charakterisiert. ^b H(3) 6.38(S,1). ^c H(3) 6.44(S,1). ^d H(3) 6.43(S,1); t-C₄H₉ 1.30(S,9). ^e 2-Methyl-Isomeres: OCH₃ 3.65(S,3); 2-CH₃ 1.79(S,3). ^f=CH: 5.07(T,1). ^g 2-Methyl-Isomeres: OCH₃ 3.60(S,3); 2-CH₃: 2.12(S,3). ^h Nicht eindeutig zuzuordnen. ⁱC₆H₅ 7.07(S,5). ^kC₆H₅, C₆H₄, ta6.95(M,9). ⁱ2,3-Phenyl-p-tolyl-Isomeres: OCH₃ 3.31(S,3); CH₃ 1.91(S,3). ^mC₆H₅, C₆H₄, H(6,7) 6.85(S); ca.6.80-7.50(M). ^a2,3-p-Trifluormethylphenyl-phenyl-Isomeres: OCH₃ 3.26(S,3); cH₃ 1.92(S,3). ^g H(3) 6.63(S,1); t-C₄H₉ 1.17(S,9). ^r=CH: 5.09(T,1). ^aC₆H₅ 7.15(Br,5). ⁱC₆H₅, C₆H₄, H(6,7) ca.6.80-7.25(M,11). ^aC₆H₅, C₆H₄, H(6,7) 6.93(S), ca.6.80-7.30(M). ^oC₆H₄, H(6,7) 6.81(S), ca.6.95-7.30(M).

¹H-NMR-Spektren

Die ¹H-NMR-Spektren zeigen an, dass die Naphtholliganden in IX-XV, XX-XXIII und XXVII-XXIX über den substituierten Ring an das Metall gebunden sind. So sind in keinem Fall die Resonanzabsorptionen der Naphthalinprotonen H(5-8), wohl aber die der 3-ständigen Wasserstoffatome in IX-XI nach höherem Feld verschoben. Zur Unterscheidung der Isomeren a und b können insbesondere die Signale der ringständigen Methyl- und Methoxygruppen herangezogen werden. Im stark anisotropen Lösungsmittel Benzol- d_6 ist die Resonanzabsorption der aromatischen Methylprotonen bei den 3-Methyl-Verbindungen a gegenüber den Isomeren b meist in charakteristischer Weise tieffeldverschoben. Die Signale der Methoxyfunktionen erscheinen dagegen bei höherem Feld. Auch bei den 2,3-Diarylnaphthol-Komplexen lassen sich beide Isomeren nebeneinander nachweisen; die

TABELLE 4

ATOMKOORDINATEN VON XLIIIa

Die Lagen $\Gamma(1)$ bis $\Gamma(0)$ entsprechen zwei rotameren Einstenungen des Cr_1 -bubstituenten ($U =$	Die	ie I	Lagen	F(1)	bis	F(6)	ents	prechen	zwei	rotameren	Einstellungen	des	CF	-Substituenten	(G)	=1,	/2	.)
---	-----	------	-------	------	-----	------	------	---------	------	-----------	---------------	-----	----	----------------	-----	-----	----	----

Atom	x/a	y/b	z/c	
C(1)	0.321(1)	0.111(1)	0.881(1)	-
C(2)	0.477(1)	0.195(1)	0.874(1)	
C(3)	0.494(1)	0.182(1)	0.776(1)	
C(4)	0.364(1)	0.085(1)	0.689(1)	
C(5)	0.214(1)	0.001(1)	0.696(1)	
C(6)	0.192(1)	0.010(1)	0.789(1)	
C(7)	0.300(1)	0.132(1)	0.977(1)	
C(8)	0.423(1)	0.230(1)	1.063(1)	
C(9)	0.584(1)	0.316(1)	1.058(1)	
C(10)	0.608(1)	0.294(1)	0.966(1)	
O (1)	0.7636(8)	0.3729(5)	0.9580(4)	
C(30)	0.903(1)	0.313(1)	0.993(1)	
O(2)	0.1415(7)	0.0492(5)	0.9784(4)	
$\mathbf{C}(1)$	0.724(1)	0.422(1)	1.152(1)	
C(12)	0.780(1)	0.564(1)	1.145(1)	
C(13)	0.914(1)	0.666(1)	1.230(1)	
C(14)	0.993(1)	0.627(1)	1.323(1)	
C(15)	0.936(1)	0.490(1)	1.332(1)	
C(16)	0.805(1)	0.388(1)	1.247(1)	
C(17)	1.139(2)	0.736(1)	1.415(1)	
F(1)	1.273(2)	0.801(2)	1.391(1)	
F(2)	1.206(2)	0.693(1)	1.499(1)	
F(3)	1.078(2)	0.843(2)	1.443(1)	
F(4)	1.148(4)	0.864(3)	1.408(2)	
F(5)	1.291(3)	0.725(2)	1.424(2)	
F(6)	1.128(4)	0.723(3)	1.503(3)	
C(21)	0.389(1)	0.254(1)	1.161(1)	
C(22)	0.362(1)	0.377(1)	1.199(1)	
C(23)	0.332(1)	0.394(1)	1.291(1)	
C(24)	0.325(1)	0.290(1)	1.346(1)	
C(25)	0.347(1)	0.168(1)	1.310(1)	
C(26)	0.379(1)	0.149(1)	1.217(1)	
C(27)	0.297(1)	0.311(1)	1.449(1)	

TABELLE 5

WICHTIGE ABSTÄNDE UND WINKEL VON XLIIIa

Abstände (pm)				
C(1)-C(2)	140(1)	C(7)-C(8)	135(1)	
C(1) - C(6)	141(1)	C(7)-O(2)	137(1)	
C(1)-C(7)	141(1)	C(8)-C(21)	148(1)	
C(2) - C(3)	141(1)	C(8)-C(9)	144(1)	
C(2) - C(10)	141(1)	C(9)-C(10)	136(1)	
C(3) - C(4)	136(1)	C(9)-C(11)	149(1)	
C(4)-C(5)	137(2)	C(10)-O(1)	139(1)	
C(5)-C(6)	136(1)	O(1)-C(30)	141(1)	
Winkel (°)				
C(1)-C(7)-O(2)	116.3(7)	C(7)-C(8)-C(21)	120.6(8)	
C(8) - C(7) - O(2)	121.0(8)	C(7)-C(8)-C(9)	119.1(8)	
C(1)-C(7)-C(8)	122.7(8)	C(9)-C(8)-C(21)	120.2(7)	
C(2)-C(10)-O(1)	117.2(7)	C(8)-C(9)-C(10)	118.6(7)	
C(9)-C(10)-O(1)	120.2(7)	C(8)-C(9)-C(11)	120.5(7)	
C(2)-C(10)-C(9)	122.6(7)	C(10)-C(9)-C(11)	120.9(7)	

Fig. 1. Die Struktur von XLIIIa. Die Wasserstoffatome und die alternativen Lagen der fehlgeordneten Fluoratome sind der besseren Übersichtlichkeit halber nicht gezeichnet.

Zuordnung jedoch ist wegen zu geringer Unterschiede in den chemischen Verschiebungen der OCH₃-Protonen problematisch.

Die 5-10- η -Komplexe XXX-XXXIII lassen sich an den hochfeldverschobenen Resonanzabsorptionen für die Naphthalinprotonen H(5-8) erkennen. Die ¹H-NMR-Spektren der Naphthol-Komplexe, der unkoordinierten Naphthole sowie der 1,4-Naphthochinone sind den Tabellen 2 und 3 zu entnehmen.

Röntgenstrukturanalyse von 3-p-Trifluormethylphenyl-4-methoxy-2-p-tolyl-1-naphthol (XLIIIa)

Da das Substitutionsmuster der 2,3-Diaryl-naphthol-Komplexe auf spektroskopischem Wege allein nicht eindeutig ermittelt werden konnte, wurde an einem Beispiel eine Röntgenstrukturanalyse durchgeführt. Dazu wählten wir das aus XXIXa, XXIXb durch Ligandensubstitution unter CO-Druck als geringfügig überwiegendes Hauptprodukt entstandene 3-p-Trifluormethylphenyl-4-methoxy-2p-tolyl-1-naphthol XLIIIa aus, das sich durch mehrmalige Umkristallisation aus t-Butylmethylether/Cyclohexan frei vom 2-p-Trifluormethylphenyl-3-p-tolyl-Isomeren XLIIIb erhalten liess.

Die Verteilung der Bindungslängen im Naphthalin-Grundgerüst von XLIIIa entspricht mit Ausnahme des grossen Unterschieds zwischen den Abständen C(4)-C(5) und C(8)-C(9) weitgehend der im unsubstituierten Naphthalin [11] bzw. im 1,4-Naphthochinon [12]. Allerdings sind in XLIIIa die beiden anellierten Sechsringe nicht koplanar: Innerhalb der 2.5 σ -Grenze sind einerseits C(1) bis C(6) und andererseits C(7) bis C(10) einschliesslich O(1) und O(2) planar; die beiden Ebenen aber schliessen einen Winkel von 4.5° ein. Die Atome C(11) und C(21) liegen mit -2.5(8) bzw. 4.4(8) pm wenig unter bzw. über der zuletzt genannten Ebene, mit der die Ebene des Tolylsubstituenten einen Diederwinkel von 67°, die des p-CF₃C₆H₄-Restes einen Winkel von 56.5° einschliesst.

Regioselektivität

Die Regioselektivität des Alkineinbaus wurde anhand der ¹H-NMR-spektroskopisch in Benzol- d_6 ermittelten Isomerenverhältnisse a/b auf der Stufe der 1-4:9,10-

Isomerenverhältnis ^a		Isomerenverh	ältnis "	
	a/b		a/b	
IX	b	XX ·	69/31	
х	b	XXII	92/8	
XII	c	XXIII	63/37	
XIII	c	XXVII	53/47	
XIV	c	XXVIII	56/44	
xv	d	XXIX	54/46	

TABELLE 6 REGIOSELEKTIVITÄT DES ALKINEINBAUS

^{a 1}H-NMR-spektroskopisch bestimmt (Reproduzierbarkeit ±5). ^bNur 2-Alkyl-Isomeres nachweisbar. ^cNur ein Isomeres nachweisbar. ^dNur 2-Phenyl-Isomeres nachweisbar. η -Naphthol-Komplexe bestimmt. In einigen Fällen überprüften wir die Ergebnisse bei den unkoordinierten Liganden, wobei sich eine Reproduzierbarkeit innerhalb der Fehlergrenzen (± 5) ergab. Aus Tabelle 6 wird ersichtlich, dass die Regioselektivität stark von der Art des Alkins abhängig ist [2,13,14] und in der Reihe

aliphatische 1-Alkine > aliphatische 2-Alkine > Diarylalkine

abnimmt. Das Isomerenverhältnis a/b steigt deutlich an, wenn etwa bei aliphatischen 2-Alkinen der Methylsubstituent durch ein Wasserstoffatom oder der andere n-Alkylsubstituent durch den t-Butylrest ersetzt wird. Ob dies allein auf eine sterische Kontrolle der C-C-Verknüpfung von Carben- und Alkinkohlenstoffatom zurückzuführen ist oder ob die Ladungsverteilung innerhalb der C-C-Dreifachbindung von Einfluss ist, kann zur Zeit nicht entschieden werden. So liesse sich die obige Regioselektivitätsreihe auch mit der Polarisierung der Alkinfunktion korrelieren, als deren Mass bereits früher näherungsweise die Differenz der ¹³C-NMRchemischen Verschiebungen der Alkinkohlenstoffatome herangezogen wurde [15]. Ein ähnlicher Zusammenhang wurde bei der Bildung der Naphthol-Komplexe zwischen der Elektronendichte der Dreifachbindung und der Reaktionsgeschwindigkeit beobachtet [3]. Die überraschende Regiospezifität bei unsymmetrischen Alkinen mit längeren Alkylseitenketten (3-Heptin, 4-Nonin) ist jedoch weder mit einer sterisch noch mit einer elektronische kontrollierten C-C-Verknüpfung allein zu erklären.

Experimenteller Teil

Alle Arbeiten wurden, soweit Metall-Komplexe vorlagen, unter N_2 -Schutz mit getrockneten, N_2 -gesättigten Lösungsmitteln durchgeführt. IR-Spektren: Perkin-Elmer Modell 21, Modell 283B, Modell 577. ¹H-NMR-Spektren: Jeol PMX 60, Varian EM 360. Massenspektren: Varian MAT 311A.

Die analytischen Daten der dargestellten Verbindungen sind in den Tabellen 7 und 8 zusammengestellt.

Allgemeine Vorschrift zur Darstellung der Tricarbonyl[1-4:9,10- η -(2,3-R', R^2 -4-methoxy-1-naphthol)]chrom-Komplexe IX-XV, XX-XXIII und XXVII-XXIX

Eine Lösung von 5 mmol Pentacarbonyl(methoxyphenylcarben)chrom (I) in 25 ml t-Butylmethylether wird mit der 1.5-fach molaren Menge Alkin versetzt und 2 bis 5 h auf 45–50°C erwärmt. Im Falle der Dialkylalkine mit längeren Seitenketten ist es vorteilhaft, einen leichten Stickstoffstrom durch die Lösung zu leiten, um das entstandene Kohlenmonoxid zu entfernen und somit die Reaktionszeit zu verkürzen. Nach dem Einengen der Lösung im Ölpumpenvakuum wird der Rückstand in wenig Methylenchlorid aufgenommen und bei 0°C an Kieselgel (Fa. Merck, Typ 60, Korngrösse 0.06–0.2 mm) mit Methylenchlorid/Pentan (1/1) chromatographiert. Nach geringen Mengen unumgesetzten Carben-Komplexes eluiert man eine orangerote Zone, aus der nach Entfernen des Lösungsmittels die Tricarbonylchrom-Komplexe als orangerote Feststoffe erhalten werden. Bei Verwendung der 1-Alkine IX–XI werden nach dem Carben-Komplex zunächst die unkoordinierten Naphthol-Derivate XXXIV–XXXVI eluiert.

No. C_1 H C H C O X 8^{-1} 4^{-1} $C_1H_4CO_3$ 322 3805 4.72 1439 1470 1470 1470 1470 1470 1470 1470 1470 1131^{-10} 11311^{-10} 11311^{-10} 11311^{-10} 11311^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} 11312^{-10} <th></th> <th>Schmp.</th> <th>Ausbeute</th> <th>Summenformel</th> <th>Mol. Masse</th> <th>Analysen (ge</th> <th>f.(ber.) (%))</th> <th></th> <th></th>		Schmp.	Ausbeute	Summenformel	Mol. Masse	Analysen (ge	f.(ber.) (%))		
IX $80''$ 45 $C_1H_{46}CrO_{5}$ 353 5805 4.72 1431 X 78-79 5 $C_{21}H_{46}CrO_{5}$ 422.3 5396 4.73 1436 X1 133'' 79 $C_{21}H_{46}CrO_{5}$ 422.4 6.203 6.203 1436 X1 133'' 79 $C_{21}H_{46}CrO_{5}$ 380.4 6.203 12.33 1436 X11 62 $C_{31}H_{45}CrO_{5}$ 380.4 6.233 5.30 12.33 12.33 X11 62 $C_{31}H_{45}CrO_{5}$ 380.4 6.050 5.53 12.33 12.33 X11 62 $C_{31}H_{45}CrO_{5}$ 380.4 60.63 5.56 13.16 12.33 X11 62 $C_{31}H_{45}CrO_{5}$ 380.4 60.53 5.60 13.16 20.325 X11 62 $C_{31}H_{3}CrO_{5}$ 380.4 60.53 5.60 13.16 20.325 X12 60.63 56.61 60.35 60.63 <			() 005. au 1)		(gei. (bei.))	C	Н	Ċ	0
	X	<i>80 °</i>	45	C ₁₇ H ₁₆ CrO5	352	58.05	4.72	14.93	
X $76-79$ 39 $C_{21}H_{36}CO_{3}$ 422 6.34 6.38 11.34 X1 133° 79 $C_{10}H_{16}CO_{3}$ 563 535 12.34 X1 133° 79 $C_{10}H_{16}CO_{3}$ 563 535 1334 X11 62 $C_{10}H_{12}CO_{3}$ 3804 6006 536 1133 X11 68 $C_{20}H_{12}CO_{3}$ 3944 6003 556 1133 2022 X1V 62 $C_{1}H_{16}CO_{3}$ 3944 6003 556 1133 2022 X1V 62 $C_{1}H_{16}CO_{3}$ 3944 6030 550 1133 2022 X1V 62 $C_{1}H_{16}CO_{3}$ 3944 61300 550 1133 2023 X1V 62 739 61300 6300 6300 1472 2023 X1V 862 739 6140 6140 61300 61300 <td></td> <td></td> <td></td> <td></td> <td>(352.3)</td> <td>(57.96)</td> <td>(4.58)</td> <td>(14.76)</td> <td></td>					(352.3)	(57.96)	(4.58)	(14.76)	
XI 133* 79 $C_{11}H_{18}CO_3$ 366 32.51 (5.20) (12.1) XI 62 $C_{13}H_{18}CO_3$ 366 9302 5.56 12.31 XI 62 $C_{13}H_{18}CO_3$ 380 60.00 5.36 12.31 XI 66 $C_{21}H_{24}CO_3$ 380 60.00 5.36 12.33 XI 66 $C_{21}H_{24}CO_3$ 384 60.00 5.36 13.15 20.23 XI 62 $C_{21}H_{24}CO_3$ 384 60.03 5.36 13.16 20.23 XV 162-164 73 $C_{21}H_{3}CO_3$ 400 63.16 63.03 13.16 20.23 XV 162-164 73 $C_{31}H_{3}CO_3$ 386 12.40 53.03 13.16 20.23 XV 162-164 35 66 $C_{31}H_{3}CO_3$ 56 12.40 13.16 12.66 XV 162-164 353 161.70 53.23 12.16 12.43 <	×	78-79	59	C ₂₂ H ₂₆ CrO5	422	63.34	6.38	11.24	
XI 133* 79 $C_{16}H_{16}CO_{3}$ 366 395.2 5.35 XI 6 $C_{16}H_{12}CO_{3}$ 386.3 (603) (5.30) (136) XI 6 $C_{10}H_{12}CO_{3}$ 380.4 (603) (5.30) (136) XII 6 $C_{10}H_{12}CO_{3}$ 394 (603) (5.30) (136) XIV 6 $C_{10}H_{12}CO_{3}$ 394 (603) (5.30) (136) XIV 6 $C_{10}H_{12}CO_{3}$ 394 (603) (5.30) (136) XIV 6 $C_{11}H_{16}CO_{3}$ 394 (603) (5.30) (136) XV 162-164 73 $C_{11}H_{16}CO_{3}$ 392 (230) (123) (2028) XV 162-164 73 $C_{11}H_{16}CO_{3}$ 352 538 12.82 (2028) XV 162-164 73 $C_{12}H_{16}CO_{3}$ 352 538 12.83 12.73) XV 162-164 73 C_{12}					(422.4)	(62.55)	(6.20)	(12.31)	
XII $(26,3)$ $(56,3)$ $(50,0)$ (43) $(30,1)$ $(35,3)$ $(30,3)$	XI	133 a	79	C ₁₈ H ₁₈ CrO ₅	366	59.52	5.36		
XII 62 $C_{18}H_{10}CrO_{3}$ 380 60.66 5.56 12.38 XII 6 $C_{20}H_{22}CrO_{3}$ 380.4 60.60 5.56 12.38 XII 6 $C_{20}H_{22}CrO_{3}$ 384.4 60.60 5.56 1318 20.22 XIV 6 $C_{20}H_{24}CrO_{3}$ 394.4 60.61 5.50 1318 20.23 XV 162-164 73 $C_{11}H_{6}CrO_{3}$ 394.4 60.61 5.50 1318 20.23 XV 162-164 73 $C_{11}H_{6}CrO_{3}$ 394.4 60.61 5.50 1318 20.23 XV 162-164 73 $C_{11}H_{6}CrO_{3}$ 356 357.23 352.2					(366.3)	(59.02)	(4.95)		
XII 68 $C_{20}H_{12}CO_5$ 384.4 (6000) (5.30) (15.64) 20.22 XIV 62 $C_{1}H_{12}CO_5$ 394 (6001) (5.30) (15.64) 20.23 XIV 62 $C_{1}H_{12}CO_5$ 394 (6001) (5.30) (15.64) 20.23 XIV 62 $C_{1}H_{16}CO_5$ 408 (14.0) 5.86 1315 20.23 XV 162-164 73 $C_{14}H_{16}CO_5$ 400 (61.76) (5.32) (12.73) (20.23) XX 56 $C_{1}H_{16}CO_5$ 352 58.21 4.63 (12.73) (20.23) XX 58 $C_{1}H_{16}CO_5$ 352 58.21 4.63 (12.73) (20.23) XXII 80 $C_{19}H_{16}CO_5$ 356 35.21 (12.73) (20.24) XXI 80 $C_{10}H_{10}CO_5$ 356 55.3 (13.19) (20.24) XXII 39 $C_{21}H_{20}CO_5$ 380.3 39.93 53.3	XII		62	C ₁₉ H ₂₀ CrO ₅	380	60.66	5.56	12.28	
XII 66 $C_{2a}H_{2z}CO_3$ 394 6063 5.66 13.15 2022 XIV 62 $C_{21}H_{2z}CO_3$ 408 61.0 5.86 13.15 2023 XIV 62 $C_{21}H_{3z}CO_3$ 408 61.0 5.88 12.83 2023 XV 162–164 73 $C_{21}H_{16}CO_3$ 408 61.76 5.92 (12.19) (2028) XY 162–164 73 $C_{21}H_{16}CO_3$ 360 61.76 5.82 12.83 12.83 2023 XY 162–164 73 $C_{17}H_{16}CO_3$ 360 530 (12.99) (2028) (20					(380.4)	(00.09)	(5.30)	(13.64)	
XIV 62 $C_{21}H_{24}CrO_{3}$ (904.4) (60.91) (562) (13.18) (2023) XV 162-164 73 $C_{21}H_{45}CrO_{3}$ 408 (1.40) 5.88 1.282 (2023) XV 162-164 73 $C_{21}H_{45}CrO_{3}$ 400 65.06 (1.273) (1.273) (2.273) XV 162-164 73 $C_{21}H_{45}CrO_{3}$ 352 5.82 1.282 (12.73) (2.29) XXI 80 $C_{17}H_{6}CrO_{3}$ 352 5.82.1 (4.63) (12.73) (2.29) XXI 80 $C_{19}H_{16}CrO_{3}$ 352 5.82.1 (4.476) (3.16) (3.26) (1.476) XXII 90 $C_{19}H_{16}CrO_{3}$ 360.3 (5.902) (4.19) (1.476) XXII 39 $C_{19}H_{16}CrO_{3}$ 380.4 (60.00) (5.30) (1.419) XXII 31 $C_{10}H_{10}CrO_{3}$ 380.4 (60.23) (5.902) (1.419) XXIII 32	XIII		99	C ₂₀ H ₂₂ CrO ₅	394	60.63	5.66	13.15	20.22
XIV 62 $C_21H_3CO_5$ 408 61.40 5.88 1282 XV $162-164$ 73 $C_21H_{16}CO_5$ 408 61.40 5.88 12.73 (2.73) XV $162-164$ 73 $C_21H_{16}CO_5$ 400 63.00 (40.3) (40.3) (12.73) XX 56 (400.4) (63.00) (40.3) (12.9) XX 18 0 $C_{18}H_{16}CO_5$ 352 38.21 4.63 (12.79) (12.79) XX 56 38.23 58.21 4.63 (12.9) XX 18 0 $C_{18}H_{16}CO_5$ 352 58.21 4.63 (14.76) XX 18 39 $C_{19}H_{20}CO_5$ 366 38.79 5.14 13.42 XX 18 39 $C_{19}H_{20}CO_5$ 360 (39.02) (49.9) (14.19) XX 18 34 $C_{35}H_{30}CO_5$ 602 (602.8) (69.74) (63.79) (13.67) XX 19 34 $C_{37}H_{30}CO_5$ 602 (602.8) (69.74) (63.79) (13.67) XX 19 52 $C_{27}H_{17}F_3CO_5$ 602 (602.8) (68.10 4.38 7.93 XX 11 66 $C_{27}H_{17}F_3CO_5$ (602.8) (68.0) (42.3) (10.91) XX 11 66 $C_{27}H_{17}F_3CO_5$ 330 (476.4) (68.0) (42.3) (10.91) XX 19 $(52.44.4)$ (58.0) (42.3) (10.91)					(394.4)	(16.09)	(5.62)	(13.18)	(20.28)
XV 162-164 73 $C_{21}H_{16}CO_3$ (408.4) (61.76) (5.92) (12.73) XX 56 $C_{17}H_{16}CO_3$ 400 (51.06) (5.92) (12.99) XX 56 $C_{17}H_{16}CO_3$ 360 352.33 (53.21) (14.03) (12.99) XX 80 $C_{13}H_{16}CO_3$ 356 35.33 (35.13) (41.9) (14.16) XXII 80 $C_{13}H_{16}CO_3$ 366 38.37 5.14 11.42 XXIII 39 $C_{13}H_{16}CO_3$ 366 38.37 (4.76) (4.16) XXIII 39 $C_{13}H_{16}CO_3$ 366 38.37 (4.16) (14.19) XXIII 39 $C_{13}H_{16}CO_3$ 386 38.37 (4.36) (14.19) XXIII 39 $C_{13}H_{16}CO_3$ 386 38.37 (14.19) (14.19) XXIII 31 $C_{14}H_{16}CO_3$ 380 39.93 5.33 (14.19) XVIII 32 $C_$	XIV		62	C ₂₁ H ₂₄ CrO5	408	61.40	5.88	12.82	
XV 162-164 73 $C_{21}H_6CrO_3$ 400 63.06 4.05 12.65 XX 56 $C_{17}H_6CrO_3$ 352 38.21 (4.03) (12.99) XX 56 $C_{17}H_6CrO_3$ 352 35.23 (53.00) (4.03) (12.99) XXI 80 $C_{19}H_{18}CrO_3$ 366.33 (53.00) (4.03) (14.76) XXII 39 $C_{19}H_{18}CrO_3$ 366.33 (59.02) (4.95) (14.19) XXII 39 $C_{19}H_{20}CrO_3$ 380 (60.00) (5.30) (14.19) XXII 39 $C_{35}H_{30}CrO_3$ 380 (39.02) (4.95) (14.19) XXIII 38 $C_{35}H_{30}CrO_3$ 602 88.37 7.93 (31367) XVII 31 $C_{35}H_{30}CrO_3$ 602 603 (63.74) (63.06) (14.19) XVII 32 $C_{31}H_{30}CrO_3$ 602 (60.20) (53.06) (14.19) XVVII 32 <td< td=""><td></td><td></td><td></td><td></td><td>(408.4)</td><td>(01.76)</td><td>(5.92)</td><td>(12.73)</td><td></td></td<>					(408.4)	(01.76)	(5.92)	(12.73)	
XX56 $C_{17}H_6CrO_5$ 33238.214.63(12.99)XXI80 $C_{18}H_{16}CrO_5$ 35238.214.6314.72XXI80 $C_{18}H_{16}CrO_5$ 36638.795.1413.42XXII59 $C_{19}H_{20}CrO_5$ 36638.795.1413.42XXII59 $C_{19}H_{20}CrO_5$ 366380.20(40.9)(14.76)XXII59 $C_{19}H_{20}CrO_5$ 36638.795.1413.42XXII3158 $C_{35}H_{30}CrO_5$ 60269.805.39(14.19)XXIII31 $C_{35}H_{30}CrO_5$ 60269.808.587.99XXIII31 $C_{35}H_{30}CrO_5$ 60269.808.587.93XXIII32 $C_{35}H_{30}CrO_5$ 60269.808.587.93XXIII52 $C_{27}H_{17}F_5CrO_5$ 60269.806.74)(8.60)(13.67)XVVII66 $C_{27}H_{17}F_5CrO_5$ 530(13.67)(10.91)(10.91)XXVII62 $C_{28}H_{19}F_5CrO_5$ 530.4(58.06)(4.22)(10.91)XXVII62 $C_{28}H_{19}F_5CrO_5$ 544(58.06)(4.21)(10.91)XXVII62 $C_{28}H_{19}F_5CrO_5$ 544(58.06)(4.21)(10.91)XXVII62 $C_{28}H_{19}F_5CrO_5$ 544(54.4)(54.4)(54.4)XXVII630.4(54.4)(54.4)(54.4)(54.4)(54.4)XXVII </td <td>×۷</td> <td>162-164</td> <td>73</td> <td>C₂₁H₁₆CrO₅</td> <td>400</td> <td>63.06</td> <td>4.05</td> <td>12.65</td> <td></td>	×۷	162-164	73	C ₂₁ H ₁₆ CrO ₅	400	63.06	4.05	12.65	
XX 56 $C_{17}H_{6}CO_{5}$ 332 58.21 4.63 14.72 XX1 80 $C_{18}H_{18}CO_{5}$ 352 58.21 4.63 14.76 XX1 80 $C_{18}H_{18}CO_{5}$ 366 58.79 5.14 13.42 XX1 59 $C_{19}H_{20}CO_{5}$ 366.3 (57.96) (4.58) (14.19) XX1 59 $C_{19}H_{20}CO_{5}$ 38.04 (60.00) (5.30) (13.67) 38.04 (60.00) (5.30) (13.67) 34 $C_{35}H_{30}CO_{5}$ 602 69.80 8.58 7.93 XX11 52 $C_{37}H_{20}CO_{5}$ 602 (602.8) (69.74) (8.36) (8.63) XX11 52 $C_{27}H_{20}CO_{5}$ 602 (602.8) (69.74) (8.36) (8.63) XX11 52 $C_{27}H_{20}CO_{5}$ 602 (602.8) (69.74) (68.06) (4.23) (10.91) XX11 52 $C_{28}H_{19}F_{3}CO_{5}$ 530 (53.04) (68.06) (4.23) (10.91) XX11 $C_{28}H_{19}F_{3}CO_{5}$ 54 XX11 $C_{28}H_{19}F_{3}CO_{5}$ 54 XX11 $C_{28}H_{19}F_{3}CO_{5}$ 54					(400.4)	(63.00)	(4.03)	(12.99)	
XXI80 $C_{18}H_{18}CrO_{3}$ (352.3) (37.96) (4.58) (1476) XXII39 $C_{19}H_{3}CrO_{3}$ 366.3 (35.3) (37.96) (4.58) (1476) XXII39 $C_{19}H_{20}CrO_{3}$ (366.3) (3902) (4.95) (14.19) XXIIIa38 $C_{39}H_{30}CrO_{3}$ (380.4) (6000) (5.30) (13.67) XXIIIb34 $C_{35}H_{30}CrO_{3}$ (602.8) (6000) (5.30) (13.67) XXIIIb34 $C_{35}H_{30}CrO_{3}$ (602.8) (60.00) (5.30) (13.67) XXIIIb32 $C_{37}H_{30}CrO_{3}$ (602.8) (60.74) (8.63) (13.67) XXVII52 $C_{27}H_{20}CrO_{3}$ 602 (602.8) (60.74) (8.63) (8.63) XXVII66 $C_{27}H_{17}F_{3}CrO_{3}$ 530.4 (60.20) (4.23) (10.91) XXVII62 $C_{28}H_{19}F_{3}CrO_{3}$ 530.4 (8.10) (4.23) (10.91) XXIX62 $C_{28}H_{19}F_{3}CrO_{3}$ 530.4 (58.06) (4.23) (10.91) XXIX62 $C_{28}H_{19}F_{3}CrO_{3}$ 530.4 (54.4) (56.06) (4.23) (10.91) XXIX62 $C_{28}H_{19}F_{3}CrO_{3}$ 544 (54.4) (56.06) (4.23) (10.91)	XX		56	C ₁₇ H ₁₆ CrO ₅	352	58.21	4.63	14.72	
XXI 80 $C_{18}H_{18}CO_5$ 366 58.79 5.14 13.42 XXII 59 $C_{19}H_{20}CO_5$ 386.3) (59.02) (4.95) (14.19) XXII 59 $C_{19}H_{20}CO_5$ 380 59.95 5.53 13.17 XXII 58 $C_{35}H_{30}CO_5$ (600) (5.30) (13.67) XXIIIb 34 $C_{35}H_{30}CO_5$ (602.8) (69.74) (6.36) (13.67) XXIIIb 32 $C_{37}H_{30}CO_5$ (602.8) (69.74) (6.36) (8.63) XXVII 52 $C_{27}H_{17}F_5CO_5$ 662 (602.8) (68.10 4.38 10.81 XXVII 66 $C_{27}H_{17}F_5CO_5$ 530 (68.06) (4.23) (10.91) XXIIX 62 $C_{38}H_{39}F_5CO_5$ 544 XXIIX 62 $C_{38}H_{39}F_5CO_5$ 544					(352.3)	(57.96)	(4.58)	(14.76)	
XXII59 $C_{19}H_{20}CrO_{3}$ (36.3) (59.02) (4.95) (1419) XXIIIa59 $C_{19}H_{20}CrO_{3}$ 380 5995 5.53 13.17 XXIIIb58 $C_{35}H_{50}CrO_{3}$ 602 6000 (5.30) (13.67) XXIIIb34 $C_{35}H_{50}CrO_{3}$ 602 6020 8.58 7.93 XXIIIb34 $C_{35}H_{50}CrO_{3}$ 602 6020 8.58 7.93 XXVII52 $C_{27}H_{20}CrO_{3}$ 602 602.80 (66.74) (8.36) (8.63) XXVII52 $C_{27}H_{17}F_{3}CrO_{3}$ 500 610 4.38 10.81 XXVII66 $C_{27}H_{17}F_{3}CrO_{3}$ 530 (68.06) (4.23) (10.91) XXIX62 $C_{28}H_{19}F_{3}CrO_{3}$ 530 (530.4) (54.4) (68.06) (4.23) (10.91) XIX62 $C_{28}H_{19}F_{3}CrO_{3}$ 544 (544.4) (544.4) (544.4)	XXI		80	C ₁₈ H ₁₈ CrO ₅	366	58.79	5.14	13.42	
XXII 59 $C_{19}H_{20}CrO_{3}$ 380 595 5.53 13.17 XXIIIa 58 $C_{15}H_{50}CrO_{5}$ 602 6090 (5.30) (13.67) XXIIIb 34 $C_{35}H_{50}CrO_{5}$ 602 602 8.58 7.93 XXIIIb 34 $C_{35}H_{50}CrO_{5}$ 602 602 8.63 (66.74) (8.36) (8.63) (602.8) (602.8) (60.74) (8.36) (8.63) (602.8) (602.8) (602.8) (60.74) (8.36) (8.63) XXVII 52 $C_{27}H_{10}CrO_{5}$ 602 (602.8) (68.10 4.38 10.81 XXVII 66 $C_{27}H_{17}F_{3}CrO_{5}$ 530 XXVII 62 $C_{28}H_{19}F_{3}CrO_{5}$ 530 (530.4) (10.91) XXIX 62 $C_{28}H_{19}F_{3}CrO_{5}$ 544					(366.3)	(20.02)	(4.95)	(14.19)	
XXIIIa58 $C_{35}H_{30}CrO_5$ (380.4) (60.00) (5.30) (13.67) XXIIIb38 $C_{35}H_{30}CrO_5$ 602 69.80 8.58 7.93 XXIIIb34 $C_{35}H_{30}CrO_5$ 602 69.74 (8.36) (8.63) XXVII52 $C_{27}H_{20}CrO_5$ 602 $602.8)$ (60.74) (8.36) (8.63) XXVII52 $C_{27}H_{17}F_{3}CrO_5$ 500 612 4.38 10.81 XXVII66 $C_{27}H_{17}F_{3}CrO_5$ 530 (68.06) (4.23) (10.91) XXIX62 $C_{28}H_{19}F_{3}CrO_5$ 530.4 (530.4) (541.4) XXIX62 $C_{28}H_{19}F_{3}CrO_5$ 544 (544.4) (544.4)	XXII		59	C ₁₉ H ₂₀ CrO ₅	380	59.95	5.53	13.17	
XXIIIa58 $C_{35}H_{30}CrO_5$ 60269.808.587.93XXIIIb34 $C_{35}H_{30}CrO_5$ (602.8)(69.74)(8.36)(8.63)XXIII52 $C_{35}H_{30}CrO_5$ 602(602.8)(69.74)(8.36)(8.63)XXVII52 $C_{27}H_{20}CrO_5$ 602(602.8)(602.8)(602.8)(8.36)XXVII66 $C_{27}H_{17}F_3CrO_5$ 530(68.06)(4.23)(10.91)XXIX62 $C_{28}H_{19}F_3CrO_5$ 530.4)(68.06)(4.23)(10.91)XXIX62 $C_{28}H_{19}F_3CrO_5$ 544(544.4)(544.4)(544.4)					(380.4)	(00.09)	(5.30)	(13.67)	
XXIIIb34 (602.8) (607.4) (8.36) (8.63) XXIII34 $C_{35}H_{50}CrO_5$ 602 (602.8) (8.10) (8.36) (8.63) XXVII52 $C_{27}H_{10}CrO_5$ 476 68.10 4.38 10.81 XXVIII66 $C_{27}H_{17}F_3CrO_5$ 530 (68.06) (4.23) (10.91) XXIX62 $C_{28}H_{19}F_3CrO_5$ 530.4 (54.4) (68.06) (4.23) (10.91) XXIX62 $C_{28}H_{19}F_3CrO_5$ 544 (54.4) (68.06) (4.23) (10.91)	XXIIIa		58	C ₃₅ H ₅₀ CrO5	602	69.80	8.58	7.93	
XXIIIb 34 $C_{35}H_{30}CrO_{5}$ 602 XXVII 52 $C_{27}H_{20}CrO_{5}$ 602 (602.8) XXVII 66 $C_{27}H_{17}F_{3}CrO_{5}$ 476 68.10 4.38 10.81 476.4) (68.06) (4.23) (10.91) XXVII 62 $C_{28}H_{19}F_{3}CrO_{5}$ 530 (530.4) XXIX 62 $C_{28}H_{19}F_{3}CrO_{5}$ 544 (544.4)					(602.8)	(69.74)	(8.36)	(8.63)	
XVII 52 $C_{27}H_{20}CrO_{5}$ 476 68.10 4.38 10.81 XVII 66 $C_{27}H_{17}F_{3}CrO_{5}$ 530 (68.06) (4.23) (10.91) XVIII 66 $C_{23}H_{19}F_{3}CrO_{5}$ 530 (530.4) (530.4) (544.4) XXIX 62 $C_{28}H_{19}F_{3}CrO_{5}$ 544 (544.4) (544.4)	XXIIIb		34	C ₃₅ H ₅₀ CrO5	602				
XXVII 52 C ₂₇ H ₂₀ CrO ₅ 476 68.10 4.38 10.81 XXVII 66 C ₂₇ H ₁₇ F ₃ CrO ₅ 530 (68.06) (4.23) (10.91) XXVII 62 C ₂₈ H ₁₉ F ₃ CrO ₅ 530 (530.4) XXIX 62 C ₂₈ H ₁₉ F ₃ CrO ₅ 544 (544.4)					(602.8)				
XXVIII 66 C ₂₇ H ₁₇ F ₃ CrO ₅ 530 (68.06) (4.23) (10.91) XXVII 66 C ₂₇ H ₁₇ F ₃ CrO ₅ 530 (530.4) XXIX 62 C ₂₈ H ₁₉ F ₃ CrO ₅ 544 (544.4)	ΙΙΛΧΧ		52	C ₂₇ H ₂₀ CrO ₅	476	68.10	4.38	10.81	
XXVIII 66 C ₂₇ H ₁₇ F ₃ CrO ₅ 530 (530.4) XXIX 62 C ₂₈ H ₁₉ F ₃ CrO ₅ 544 (544.4)					(476.4)	(68.06)	(4.23)	(10.91)	
XXIX 62 C ₂₈ H ₁₉ F ₃ CrO ₅ 544 (544.4)	IIIAXX		\$	C ₂₇ H ₁₇ F ₃ CrO ₅	530				
XXIX 62 C ₂₈ H ₁₉ F ₃ CrO ₅ 544 (544.4)					(530.4)				
(544.4)	XIX		62	C ₂₈ H ₁₉ F ₃ CrO ₅	5 4				
					(544.4)				

^a Zersetzung. ^b Massenspektrometrisch.

TABELLE 7 ANALYTISCHE DATEN VON IX-XV, XX-XXIII UND XXVII-XXIX

TABELLE 8

	Summenformel	Mol. Masse	Analysen (gef.(ber.) (%))			
		(gef. " (ber.))	c	Н	0	
XXXIV	C ₁₄ H ₁₆ O ₂	216				
XXXVII	$C_{14}H_{16}O_2$	216 (216.3)				
XXXVIIIa	$C_{32}H_{50}O_2$	466 (466.8)				
XXXVIIIb	$C_{32}H_{50}O_2$	466 (466.8)				
XXXIX	$C_{18}H_{24}O_2$	272 (272.4)				
XL	C ₁₈ H ₁₆ O ₂	264 (264.3)	80.59 (80.92)	6.10 (6.39)		
XLI	$C_{24}H_{20}O_{2}$	340 (340.4)				
XLII	$C_{24}H_{17}F_3O_2$	394 (394.4)	72.60 (73.09)	4.44 (4.34)		
XLIII	$C_{25}H_{19}F_3O_2$	408 (408.4)	73.52 (73.52)	4.77 (4.69)		
XLVI	$C_{31}H_{46}O_2$	450 (450.7)	82.29 (82.59)	10.63	7.00 (7.10)	
XLVII	$C_{17}H_{12}O_2$	248 (248.3)	80.84 (80.92)	6.00	()	
XLVIII	$C_{23}H_{16}O_2$	324 (324 4	84.80 (85.16)	5.33	9.91 (9.87)	
XLIX	$C_{23}H_{13}F_3O_2$	378 (378 4)	72.65	3.53 (3.46)	()(0))	
L	$C_{24}H_{15}F_{3}O_{2}$	392 (392.4)	74.05 (73.47)	4.16 (3.85)		

^a Massenspektrometrisch.

Isomerisierung zu den Tricarbonyl[5-10- η -(2,3-R¹,R²-4-methoxy-1-naphthol)]chrom-Komplexen XXX und XXXIa, XXXIb-XXXIIIa, XXXIIIb

Eine Lösung von 1 mmol XV, XXVIIa, XXVIIb-XXIXa, XXIXb in 10 ml Di-n-butylether wird 3 h auf 80°C erwärmt. Nach dem Abziehen des Lösungsmittels im Hochvakuum löst man den Rückstand in Methylenchlorid und filtriert über eine kurze Kieselgel-Schicht. Die Komplexe werden IR- und ¹H-NMR-spektroskopisch charakterisiert. In ähnlicher Weise wird die Isomerisierung auch bei ¹H-NMR-Proben in Benzol- d_6 bei 80°C beobachtet.

Freisetzung der 2,3-R¹, R²-4-Methoxy-1-naphthol-Derivate XXXIV-XLIIIa, XLIIIb

In 30 ml Diethylether werden 3 mmol der Tricarbonylchrom-Komplexe IX-XI, XIV, XV, XXa, XXb, XXIIIa, XXIIIb, XXVIIa, XXVIIb-XXIXa, XXIXb gelöst und in einem 100 ml-Stahlautoklaven unter 80 bar CO-Druck auf 80°C erwärmt. Nach dem Entspannen des Autoklaven kühlt man die Lösung auf ca. -20° C und filtriert das ausgefallene Cr(CO)₆ ab. Nach Entfernen des Lösungsmittels erhält man die Naphthol-Derivate XXXIV-XLIIIa, XLIIIb, die aus Ether/Pentan bzw. t-

Butylmethylether/Cyclohexan umkristallisiert werden. Die Ausbeute, berechnet auf die isolierten Produkte, beträgt 65–90%.

Oxidation der Tricarbonylchrom-Komplexe zu den 1,4-Naphthochinonen XLIV-L

Man versetzt eine Lösung von 1 mmol XI, XV, XXa, XXb, XXIIIa, XXIIIb XXVIIa, XXVIIb-XXIXa, XXIXb in 10 ml Eisessig mit 1 ml konz. Salpetersäure und rührt 10 min. Nach Verdünnen mit 10 ml Wasser wird mehrmals mit Ether extrahiert. Die vereinigten Extrakte werden mit NaHCO₃-Lösung säurefrei gewaschen und über Na₂SO₄ getrocknet. Man entfernt das Lösungsmittel, kristallisiert aus Benzol/Pentan um und erhält gelbe Kristalle (ν (CO) (KBr): 1659–1662 cm⁻¹). Die Ausbeute, berechnet auf die isolierten 1,4-Naphthochinone, beträgt 45–85%. Die Oxidation der Phytyl-naphthol-Komplexe XXIIIa, XXIIIb wurde mit Silber(I)oxid durchgeführt [4].

Röntgenstrukturanalyse von XLIIIa

Triklin, a 839.3(6), b 1003.2(3), c 1385.7(11) pm, α 96.88(5), β 110.07(5), γ 104.68(4)°, V 1032 × 10⁶ pm³; Raumgruppe P1, Z = 2, d(ber.) 1.31 g cm⁻³.

Auf einem Vierkreisdiffraktometer Syntex P2₁ wurden 3250 unabhängige Reflexe ($2^{\circ} \leq 2\theta \leq 50^{\circ}$) gemessen (Mo- K_{α} , Graphit-Monochromator, λ 71.069 pm). Die Messdaten wurden der Lorentz- und Polarisations-Korrektur unterworfen. Die Lösung der Struktur erfolgte durch Multan 80, die Verfeinerung der Nicht-Wasserstoffatome nach der Methode der kleinsten Quadrate mit der vollständigen Matrix (Syntex XTL; Atomformfaktoren für ungeladene Atome; teilweise isotrope, teilweise anisotrope Temperaturfaktoren). Die Wasserstoff-Parameter wurden während der Verfeinerung konstant gehalten. $R_1 = 0.098$, $R_2 = 0.089$ für 1481 Strukturfaktoren ($F_0 = 4.2\sigma$). Die CF₃-Gruppe ist fehlgeordnet. Es wurden 6 halbbesetzte Fluor-Lagen verfeinert. Die Atomkoordinaten der Nicht-Wasserstoffatome sind in Tab. 4, wichtige Abstände und Winkel in Tab. 5 enthalten. Listen der Temperatur-Parameter, der Wasserstoff-Parameter und der beobachteten und der berechneten Strukturfaktoren können von den Autoren (U. Sch.) angefordert werden.

Dank

Wir danken Herrn Prof. Dr. E.O. Fischer, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

Literatur

- 1 K.H. Dötz, I. Pruskil, U. Schubert und K. Ackermann, Chem. Ber., zur Veröffentlichung eingereicht.
- 2 K.H. Dötz und R. Dietz, Chem. Ber., 110 (1977) 1555.
- 3 H. Fischer, J. Mühlemeier, R. Märkl und K.H. Dötz, Chem. Ber., 115 (1982) 1355.
- 4 K.H. Dötz, I. Pruskil und J. Mühlemeier, Chem. Ber., 115 (1982) 1278.
- 5 Auszugsweise vorgetragen in Tübingen (Dozententagung, 25.3.1981), Marburg (21.5.1981), Karlsruhe (26.5.1981), Aachen (3.6.1981), München (15.6.1981), Basel (4.12.1981), Zürich (7.12.1981), Duisburg (9.12.1981) und Konstanz (15.12.1981).
- 6 K.H. Dötz, J. Organometal. Chem., 140 (1977) 177.
- 7 Beim α-verzweigten 1-Alkin IV konnte auf spektroskopischem Wege keine eindeutige Aussage getroffen werden.

- 8 K.H. Dötz, R. Dietz, A. v.Imhof, H. Lorenz und G. Huttner, Chem. Ber., 109 (1976) 2033.
- 9 R.D. Fischer, Chem. Ber., 93 (1960) 165.
- 10 IR (Hexan): 1971, 1964, 1911, 1902, 1882 cm⁻¹.
- 11 D.W.J. Cruickshank, Acta Cryst., 10 (1957) 504.
- 12 M. Breton-Lacombe, Acta Cryst., 23 (1967) 1016.
- 13 Vgl. W.D. Wulff, P.-C. Tang und J. St. McCallum, J. Am. Chem. Soc., 103 (1981) 7677.
- 14 Vgl. M.F. Semmelhack, Symposium Metal-organic compounds in Organic Synthesis, 1982, Wageningen/Niederlande
- 15 D. Rosenberg, J.W. de Haan und W. Drenth, Rec. Trav. Chim. Pays-Bas, 87 (1968) 1387.